# Viabetes

## DIABETES

- Types:
  - Type 1: loss of beta cell function and absolute insulin deficiency
  - Type 2: insulin resistance accompanied by insulin deficiency
  - Gestational
  - Secondary (diabetes associated with other syndromes)
  - Prediabetes
- Epidemiology
  - Minority populations are at higher risk for complications and have higher death rates
  - Highest leading cause of nontraumatic amputations, blindness, ESKD, and death from a disease
- Pathophysiology
  - Insulin moves glucose from blood into cells
  - Pancreas releases small amounts of insulin continuously
  - Glucagon triggers release of glucose into blood from liver

## **Risk Factors**

- Type 1:
  - Less than 5% of population
  - Early onset
  - Genetic plays an important role
- Түре 2:
  - Family history is important
  - Obesity
  - Race
  - Age older than 45
  - Previous impaired glucose intolerance
  - Hyperlipidemia (HDL<35; TG>250mg/dL)
  - Delivery of baby greater than 9 lbs

## **TYPE 1 DIABETES**

- · Causes
  - Genetic
  - Immunologic (majority)
  - Environmental
  - Autoimmune response
- Pathophysiology: pancreas can't make insulin
- Characteristics
  - Onset usually before 30 years old

- Insulin is not made
- Diabetic ketoacidosis occurs in acute complication of hyperglycemia

## **Clinical Manifestations**

- Polydipsia
- Polyuria
- Polyphagia
- Weight loss



## **TYPE 2 DIABETES**

Characteristics:

- More common in adults older than 30
- Ketosis is not common except in infection or stress
- Hyperglycemic hyperosmolar syndrome (HHS) occurs in acute hyperglycemic complication

## Insulin Resistance

- Def: cells are becoming insensitive to insulin and are not reacting to insulin's function
- To overcome insulin resistance and prevent buildup of glucose in blood → pancreas makes more insulin → pancreas eventually fails to keep up → hyperglycemia
- Slow progression unlike type 1; can go undetected for years
- Very mild symptoms and by the time pt comes to hospital, long-term complications may have already started

## **Clinical Manifestations**

- Polyuria
- Polydipsia
- Polyphagia

- Fatigue
- Weakness
- Vision changes
- Numbness or tingling in hands or feet
- Dry skin
- Infections (vaginal yeast for ex)

## **CRITERIA FOR DIABETES DIAGNOSIS**

- 1. Symptoms: the 3 "P"s
- 2. Fasting BGL of higher or equal to 126mg/dL
- 3. Random BG level higher or equal to 200
- 4. A1C level higher or equal to 6.5%

## MEDICAL MANAGEMENT

- Nutritional therapy (this may be enough for type 2)
- 2. Exercise
- 3. Monitoring glucose and ketone levels
- 4. Pharmacologic therapy and medical management

Nutritional Therapy

- Main goal: to get pt down to "normal" weight
- Control BGL
- Prevent heart disease
- May need registered dietitian

## Exercise

- Reduces BGL
  - Increases glucose uptake by muscles
- Reduces risk for cardiac diseases related to hyperlipidemia; diabetic pts are already at risk for high lipid concentrations

## Monitoring Glucose Levels

- BG monitoring is the cornerstone of managing diabetes
- Always check BGL before giving insulin
  - Before meals
  - Before snacks
  - Before bedtime
  - Sometimes before and after exercise
- Helps you detect hypoglycemia or hyperglycemia

Medical Management – Ketone Testing

- If ketone is present in urine = serious lack of insulin; fat is being used for energy
- Urine dipstick will turn **purple** with ketones
- Ketones should be checked for type 1 diabetes during times of illness/stress and when BGL>240 two times in a row

Medical Management –Pharmacologic Therapy

- Types:
  - Insulin therapy
  - Oral antidiabetics
- Main goal: normalize BGL to prevent cardiac and neuropathic complications
- **Type 1** will always need insulin therapy
- Oral agents are usually only for type 2 to help overcome insulin resistance and triggers insulin release

Type 2 Diabetes Pharmacologic Therapy

- Most pts with typ2 are on **multiple agents** 
  - Usually a combination of **oral agents** and **insulin** (like Lantus/Glargine)
- Most effective treatment
- Metformin (type of insulin)
  - If pt is on this med, make sure pt waits at least 24-48 hours before undergoing contrast dye procedure; resume med if pt's kidneys are okay

## **MEDICAL MANAGEMENT: LAB TESTS**

- Labs should be done at least every 6 months
- Types:
  - Fasting lipid profile
  - Microalbuminuria test
  - Serum creatinine level
  - Urinalysis
  - ECG (since diabetic pts have high risk for cardiac issues)
  - A1C: reflects BGL for past 3 months; it's a good way to check if treatment is working
    - If levels are going down to normal over 6 months, then the therapy is working!
    - Normal range: 4-6%; γour goal is to bring down level below 7%

#### Hemoglobin Aıc % Estimated average glucose (mg/dL)

|     | •   |  |
|-----|-----|--|
| 6%  | 126 |  |
| 7%  | 154 |  |
| 8%  | 183 |  |
| 9%  | 212 |  |
| 10% | 240 |  |
| 11% | 269 |  |
| 12% | 298 |  |

#### HOSPITALIZED PATIENTS

- Hyperglycemia can lead to
  - Longer hospital stays
  - More infections
  - Higher mortality rates (especially after surgery)

#### ACUTE COMPLICATIONS OF DIABETS

- Hypoglycemia
- DKA
- HHS

#### Hypoglycemia

- Def: when insulin level falls below 70mg/dL
- Severe hypoglycemia: insulin<40mg/dL
- Causes:
  - Exercising
  - Too much insulin or hypoglycemic meds
  - Too little food
  - Can have other causes
- Clinical Manifestations
  - Mild hypoglycemia: SNS (adrenergic) responses due to release of epinephrine and NE
    - Hunger, tachycardia, sweating, etc.
  - Moderate hypoglycemia: CNS dysfunctions due to brain being deprived on energy
    - Poor concentration, headache, confusion, double vision, etc.
  - Severe hypoglycemia : very severe CNS dysfunction that pt needs help for treatment
    - Decreased LOC, seizures, disorientation, etc.

- If pts BGL is below normal but pt shows no symptoms, make sure you re-check BGL before treating them
- Some pts may not get adrenergic responses and only get CNS impairments

## Management of Hypoglycemia

- For alert pts
  - Rule of 15: give 15 grams of carbs and recheck BGL after 15 min
    - Ex of 15g of carbs: 4oz of juice, 1 tbsp of sugar, 203 glucose tablets, etc.
  - You need to keep BGL up after giving initial carb, so make sure to give other food to keep BGL up
- For unconscious pts at Home
  - No oral meds or carbs due to danger
  - Give **1mg of glucagon** injection
  - Pts may take up to **20 mins** to regain consciousness
    - Follow up with 15 grams of concentrated carbs and snacks
- For pts at hospital or who can't eat
  - Give 25-55 cc/mL of Dextrose 50% water (D50)
    - Super quick and used in emergency (effects are seen in mins)

## **Patient Teaching**

- Teach preventions of hypoglycemia
  - Regular meals
  - Eating more with exercise
  - Consistent insulin administration
  - Routine BGL tests
  - Others
- Wearing a **bracelet** stating that pt has diabetes
- Carrying simple sugars
- Having families and friends know symptoms and actions

## **Diabetic Ketoacidosis**

- Occurs in extreme hyperglycemia, absence of insulin
- Cannot use glucose as energy, thus uses fat
- Rarely occurs with type 2
- Can progress to cerebral edema, coma, and death

**Main Clinical Features** 

- 1. Hyperglycemia
- 2. **Dehydration**
- 3. Electrolyte loss
- 4. Ketosis
- 5. **Metabolic acidosis (**due to accumulation of ketones)
- Others: orthostatic hypotension, fatigue, headaches, 3 Ps, fruity breath, Kassumaul respirations

## Lab Results

- BG>/=250 mg/dL
- Low pH
- Low HCO3-
- Ketone in urine
- Low PCO2 (compensatory)
- Na+ and K+ (and other electrolytes) level may appear normal due to fluid loss, but they are most likely low
  - You will need to replace them

## **Precipitating Factors**

- When body has stress, thus needs more glucose like during illness or infection
- Inadequate insulin
- Neglect

## DKA Management

- Main goal is to correct
  - Dehydration
  - Electrolyte loss
  - Acidosis
- Priorities
  - Give IV fluid to correct fluid depletion (maintain tissue perfusion, prevent circulatory collapse)
    - Use either 0.45 or 0.9% NS for IV fluid
  - 2. Cardiac monitor; but if K+ levels are imbalanced, connect cardiac monitor before IV fluid
  - 3. K+ replacement
  - 4. Insulin drip
    - Give insulin via IV
    - You may stop IV insulin once SQ insulin can be give, or pt can eat, or HCO3- levels are between 15-18 mEq

- Once BGL is below 300, bring down levels down slowly from this point to prevent cerebral edema
- Check for fluid overload (since you're giving IV fluid)
- Assess lung sounds (crackles)
- Check v/s often
- Check I/O
- Restoring electrolytes
  - Major concern is K+
  - Monitor every **2-4 hours**
- Monitor BG level at least every hour

## Sick Day Rules

- Applied during times of stress and illness
- Do not eliminate insulin doses
- May need extra short-acting insulin
- Encourage more frequent carb snacks
- Check BGL and ketones in urine **every 3-4 hours (**sometimes 2 hours)
- Drink lots of water if pt has diarrhea or vomiting
- Teach pt to **alert HCP if BG is higher than 200** or **ketones are present**

## Prevention

- Educate pt to administer insulin even if pt is not eating or is vomiting
- Monitor every 2 hours for BGL if pt is ill or has an infection

Hyperglycemia Hyperosmolar Syndrome

- Mostly occurs in type 2
- Mostly occur in pts older than 60
- Usually due to an **unnoticed infection** or other stresses causing higher need of insulin
- Less common than DKA
- BG can rise super high **before symptoms start** to appear (higher than 600mg)
- Serious symptoms: mental status alterations
- No ketosis or acidosis

## **Clinical Manifestations**

- Hypotension
- Serious dehydration
- Tachycardia
- Neurologic signs

- Precautions!

#### HHS Management

- Fluid replacement (check for cardiac overload)
- Insulin administration via IV
- Reverse electrolyte imbalance
- Treating underlying infection

#### Precautions

- Fluid overload
- Heart failure
- Cardiac dysrhythmia

#### DKA vs HHS

| DKA                                                                 | HHS                                                                          |
|---------------------------------------------------------------------|------------------------------------------------------------------------------|
| More common in type 1                                               | More common in type 2                                                        |
| Rapid onset ( <b>below 24</b><br>hours); BG is higher than<br>250mg | Takes a while until BG is<br>higher than 600<br>(usually)                    |
| Ketones present                                                     | No ketones                                                                   |
| ABGs altered                                                        | Relatively normal ABGs                                                       |
| Low mortality                                                       | Higher mortality (10-<br>20%); due to severe<br>dehydration and older<br>pts |

## DIABETIC PTS UNDERGOING DURGERY

- Pts are in times of stress  $\rightarrow$  more glucose need
- Pre-op phase: frequent BG monitoring (every 1-2 hours)
  - Morning insulin injection may be withheld or if pt's BG is higher than 200, then you may have to administer half the normal amount
  - Ask HCP if there's no change in insulin order
  - Look out for pts taking metformin
    - Should discontinue 24-48 hours prior to surgery
- During surgery, pt's BG can be maintained via IV insulin or via dextrose infusion
- After surgery, make sure to give SQ insulin at least 30 min before removing IV insulin

## DIABETICS PTS WHO ARE NPO

 Nurses must ensure that insulin dosage has been changed

- Eliminating rapid-acting insulin
- Give half the usual dose of intermediate insulin
- IV dextrose may be given to prevent hypoglycemia
- Make sure pts are scheduled for tests early morning to prevent complications
- Though not eating, check their BGL according to their mealtimes (morning and before bed especially)

## DIABETIC PTS ON LIQUID DIET

 Do not use "sugar free" drinks since their only calorie source is drinks

## LONG TERM COMPLICATIONS OF DIABETES

- Macrovascular, microvascular, and neuropathy
- Major cause of **disabilities**
- Occurs both in type 1 and type 2
  - Type 1 is more associated with **kidney** disease
  - Type 2 is more associated with cardiac disease

## **Macrovascular Complications**

- **Def:** changes to medium to large blood vessels
  - Thickening, sclerosis, plaque buildup
- Happens in early ages
- 3 main types:
  - 1. **CAD** (highest mortality)
  - 2. Cerebrovascular disease
  - 3. **PVD**
- Silent MI: MI with no early signs
- Management
  - Decreasing risk factors for atherosclerosis
  - Controlling weight
  - Controlling HTN (meds)
  - Controlling hyperlipidemia
  - Controlling BG levels
    - Stop smoking (since diabetic pts are already at risk for cardiac issues)

**Microvascular Complications** 

- **Def:** capillary basement membrane thickening
- Affects retina and kidneys

- Diabetic retinopathy: proliferation of new blood vessels from retina to vitreous
  - New vessels are prone to rupture → microaneurysm, intraretinal hemorrhage
  - Formation of fibrous scar tissue → retinal detachment
  - Usually damage is non-reversible
  - Clinical manifestations
    - Painless
    - Cobwebs, floaters
    - Hazy vision
    - Loss of vision
  - Management
    - BG control
    - HTN control
    - Stop smoking
    - Argon laser photocoagulation
    - Vitrectomy
- **Nephropathy:** kidney disease secondary to diabetic microvascular changes; due to increase glomerular capillary pressure
  - Early signs: **albumin** in urine
  - Can lead to ESKD
  - Management:
    - Check urine annually
    - BUN and creatinine level check
    - Not using contrast dye
    - Control HTN and BG
    - Others
  - Treatment:
    - Dialysis (higher mortality rate for pts with diabetes)
    - Kidney transplant

## Diabetic Neuropathy

- **Def:** damage of nerves due to diabetes
  - Peripheral
  - Autonomic
  - Spinal
- Mostly affect lower extremities
- Initial symptoms:
  - Tingling
  - Heightened sensation
  - Burning
- Late symptoms:
  - Numbness
  - Proprioception problems
  - Decrease sense of touch
  - Gait issue

- Peripheral neuropathy management
  - Intensive insulin therapy
  - Control BG
  - Analgesics
  - Antiseizure meds
- Foot and Leg Problems
  - 50-75% of amputations happen due to diabetes
    - 50% of these are preventable
  - High risk factors:
    - Diabetic more than 10 yrs
    - Older than 40
    - Smoker
    - Decreased peripheral pulses
    - Decreased sensation
    - Had previous amputations
  - Common causes:
    - 1. Injury in foot
    - 2. Unable to feel injury
    - 3. Serious infection occurs
    - Prevention: educate pt
      - Inspect feet daily
      - Keep skin soft and smooth
      - Trim toenails
      - Consult podiatrist
      - Stop smoking
      - Contact HCP immediately if there's a sore or bruise that doesn't heal after 24 hours

## Insulin

#### INSULIN THERAPY

- Type 1 diabetes will always need insulin therapy
- Type 2 diabetes may or may not require insulin therapy

Time Course of Action

- **Onset:** how soon the insulin can start lowering blood glucose level
- Peak: the time after administration that the insulin works its hardest to get blood glucose level down
- **Duration of action**: how long the blood glucose level can be kept down (after administration)

## Rapid Acting Insulin (Lispro)

- Most like **endogenous insulin** in response to meal
- Shorter duration than regular insulin
- Covers: immediately after injection
- Should be given 5-15 mins before eating

| Onset    | 10-15 min |  |  |
|----------|-----------|--|--|
| Peak     | 1 hour    |  |  |
| Duration | 2-4 hours |  |  |

- Mixing in syringe: NPH + regular insulin

Short Acting Insulin/Regular Insulin (Humulin R)

- Clear (not cloudy)
- Should be given 20-30mins before meal
- Covers: increase in glucose after meals
- Can be given alone or with other longer acting insulin
- Can be given IV, IV insulin drip
- Mixing in syringe: can be mixed with all insulins except Glargine and Glulisine

## **Basal Insulin**

- Def: insulin that is either intermediate or long acting
- Needed by type 1 diabetes (and sometimes type 2)
- Intermediate acting insulin
  - Also known as NPH

| Onset    | 2-4 hours   |  |  |
|----------|-------------|--|--|
| Peak     | 4-12 hours  |  |  |
| Duration | 16-20 hours |  |  |

Very Long-Lasting Insulins

- Types: Glargine (Lantus) and Detimir
- "Peakless"
- Absorbed very slowly over 24 hours
- Should never be mixed
- Provide relatively constant blood glucose level throughout day
- Given once a day at same time

## **CATEGORIES OF INSULIN**

| Time course            | Agent                 | Onset        | Peak          | Duration    |
|------------------------|-----------------------|--------------|---------------|-------------|
| Rapid acting           | Lispro/Hu<br>malog    | 10-15<br>min | 1 hour        | 2-4hours    |
| Short acting           | Regular<br>(Humulin)  | 30-60<br>min | 2-<br>3hours  | 4-6 hours   |
| Intermediate<br>acting | NPH                   | 2-4<br>hours | 4-12<br>hours | 16-20 hours |
| Very long<br>lasting   | Glargine<br>(Lanctus) | 1 hour       | None          | 24 hour     |

**Insulin Regimes** 

 Usually a combination of short-acting insulin and intermediate or long-acting insulin

## **Insulin Injection Sites**

- Most common is abdomen



- 6mm
- 12.7mm

Insulin Administration

- Cannot administer fraction of doses
- Check facility's policies for rounding rules but KSU's rules are:
  - Less than 0.4  $\rightarrow$  rounds down
  - Equal or more than 0.5  $\rightarrow$  rounds up

- Insulin sliding scale:
  - For BG>180: (BG-100)/30 = amount of regular insulin or Aspart insulin
- Instrument options to give insulin
  - Insulin pen (easier
  - **Insulin pump cannula** (device that mimics the pancreas in releasing small amounts of insulin at a "basal rate")