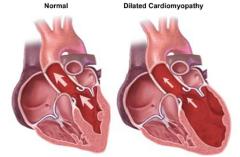
Heart Jailure

CARDIAC OUTPUT


- Cardiac output = stroke volume x heart rate •
- Depends on:
 - **Preload** (volume)
 - Afterload (resistance)
 - Myocardia contractility (UMPH)
 - → **Digoxin** can increase contractility
 - Heart rate (speed) 0
 - → Beta blockers can help slow down heart rate
- Drug target the above 4 factors

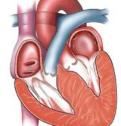
RISK FACTORS

- HTN
- Heart problems
 - o valve disorders
 - o CAD
 - **MI:** ischemic heart disease in the number one cause
 - → Chronically clogged coronary arteries lead to heart ischemia \rightarrow heart has to work harder \rightarrow HF
 - Structural disorders
- Lifestyle -alcohol, smoking, diet •
 - Alcohol can poison muscle fibers
- **Pulmonary disorders**
- Other co-morbidities


POPULATION AT RISK

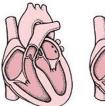
- Pts with low socioeconomic status
- **Geriatric populations**
 - s/s recognition is low due to pts thinking it's part of the aging process
 - Elders pts have harder time detecting SOB
 - Common s/s is mental state alteration and confusion




CARDIOMYOPATHY

- Dilated: inflammation and degeneration of myocardial fibers
 - Left ventricular dilation and atrial enlargement \rightarrow contractile dysfunction
 - → Stasis of blood in left ventricle
 - → Impaired systolic function
 - Risk of sudden cardiac death (SCD) 0 from lethal dysrhythmias
 - → **Dysrhythmias** develop due to impaired conduction Dilated Cardiomyopathy

Hypertrophic: asymmetric ventricular hypertrophy without ventricular dilation


Normal heart

Hypertrophic heart

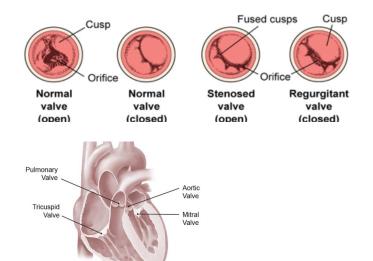
VICIOUS CYCLE OF CONGESTIVE HEART FAILURE

- Impaired diastolic function → impaired ventricular filling
- Risk of SCD (esp. in young adults that are healthy)
 - → They septum hypertrophies and bulges out to the left ventricle → ventricles have to work harder to push the septum out of the way to eject blood to aorta → heart needs more blood to generate the pressure and force
 - ✓ When pt engages in exercise, heart beats faster → not enough filling time (diastole)
 → heart doesn't have enough blood to generate pressure → muscle blocks the passage to aorta → HF
- Because heart is bigger, it needs more 02 supply → worsening of HF
- Restrictive: systolic function is unchanged

Normal Restrictive Cardiomyopathy

The walls of ventricles become stiff

- Least common
- Heart has connective tissue growing continuously in the ventricles → heart can't relax enough to receive blood
- o Impaired diastolic filling and stretch


TYPES OF HF

Left	Right
 Most common LV failure → blood backs up into left atrium and into pulmonary veins 	 Primary cause is left- sided failure RV fails → blood backs up into the right atrium and venous circulation
LUNG ISSUE	
 Pulmonary edema 	PERIPHERY ISSUE
 Pulmonary crackles 	– JVD
- SOB	 Blood backs up in systemic areas and

Can also cause dizziness (low
brain perfusion) and low
urine output (low kidney
perfusion)organs (hepatomegaly
→ RUQ tenderness)-Ascites (if liver damage
is severe)

Systolic	Diastolic
 Def: impaired left ventricular contractility Decreased ejection fraction; normal range is 55-75%; anything below 40% = HF Decreased CO 	 Ventricle is normal size but hypertrophy → loss of left ventricular diastolic relaxation (filling) → filling of the ventricles is impaired Ejection fraction is normal

VALVULAR DISORDERS

- You can have both stenosis and regurgitant valves (common)
- Body does a good job in adapting to faulty valves by contracting faster and stronger to maintain normal CO → hypertrophy
- Stenosis is when valve has a too narrow opening and regurgitation is when valve doesn't close all the way

Mitral Valve Disorders

- Left-sided valve, so s/s related to decreased CO
 - Fatigue, dyspnea with exertion, weakness, syncope
 - S/s will progress to right sided HF as well since blood will eventually back up to the right side (after lungs)

- More common that right valvular diseases due to more pressure in left heart
- 3 types:
 - **Mitral valve prolapse**: valve leaflets buckle back into left atrium
 - \rightarrow Most common is US
 - → Usually asymptomatic and is genetic
 - → S/s: pain, palpitation, panic disorders, etc.
 - → You may be able to hear a clicking nose when the valve balloons up into the left atrium
 - **Mitral valve stenosis**: adhesion of valve cause thickening of valve fissure
 - → Commonly caused by rheumatic heart disease
 - Mitral valve regurgitation
 - → Common causes: MI, rheumatic heart disease, mitral valve prolapse, infective endocarditis
 - MI: if the papillary muscles are killed during episode
 - → Left chambers must work harder to pump blood out → hypertrophy of heart

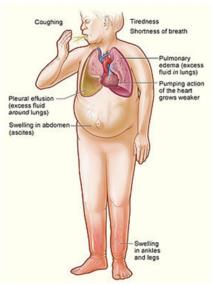
Aortic Valve Disorders

- Left sided valvular disorder, so decreased CO
- Stenosis vs regurgitation
 - Stenosis: fusion of commissures and calcification of valves → leaflets stiffen
 - → Usually due to **aging**
 - → Obstructs BF out from left ventricle to aorta
 - → Causes ventricular
 hypertrophy → pulmonary
 HTN (blood backs up into lungs) → HF
 - Regurgitation: incomplete closure of valve
 - → Causes backflow of blood from aorta to left ventricles → LV is overloaded → hypertrophy → HF
- Both stenosis and regurgitation will eventually lead to LSHF

Tricuspid and Pulmonic Valve Disorders

- Not very common; usually stenosis (regurgitation is very rare)
- Right sided valve damage causes **right sided heart failure s/s**
- Tricuspid vs pulmonic stenosis
 - Tricuspid stenosis –almost always caused by rheumatic fever or IVDA
 - \rightarrow Growing instances due to IVDA
 - → Can also lead to **regurgitation**
 - Pulmonic stenosis almost always a congenital defect
- Murmurs
 - Pulmonic valve regurgitation
 - → You'll hear a murmur during diastole since valve will not close properly
 - \circ Mitral stenosis
 - → Murmur during diastole since the valve won't open properly

CHRONIC VS ACUTE HEART FAILURE


Chronic	Acute
 Progressive worsening of ventricular function Chronic neurohormonal activity causing remodeling of myocardium S/s depends on the degree of damage, age, etc. Irreversible unless transplant is done Goal is to slow down or halt the process 	 Severe LV impairment Can be either a rapid onset or progression from chronic HF Most serious complication is pulmonary edema

• Decompensation happens when pt with chronic HF can no longer regulate HF due to stressors (ex: high Na+ intake during holidays)

Chronic HF

- Manifestations
 - Early signs: increased HR and RR (slightly)
 - Fatigue, dyspnea, orthopnea (very non-specific)

- → Paroxysmal nocturnal dyspnea
- Persistent coughing (dry, unrelieved by position changing or over the counter meds)
- o Dependent edema
- Nocturia (due to blood being pooled during day but when pt lies flat, fluid goes back to heart more easily → more blood can perfuse kidneys)
- Late signs:
 - \rightarrow Dusky, cool, and damp skin
 - → Confusion and decreased memory
 - → Weight changes (fluid retention but can have decreased appetite)
 - May suggest smaller meals or give shakes – pay attention to fluid overload with shakes
- \circ S4 and S4 sounds

- Classification/grades of severity of HF
 - 1) Class 1: mild; no limitation of physical activity
 - Class 2: mild; slight limitation of physical activity (fatigue, palpitation, or dyspnea)
 - Class 3: moderate; marked limitation of physical activity (ex: pt gets SOB with just walking to bathroom)
 - 4) Class 4: severe; unable to do any physical activity without discomfort; symptoms of cardiac insufficiency at rest

- Acute Decompensated HF
 - 3 phases:
 - 1) Early: increased pulmonary venous pressure
 - → Causes increased RR
 - → Decreased 02 sat (but PC02 level may be fairly normal since C02 diffuses more easily than 02)
 - 2) Later: interstitial edema
 - → Tachypnea
 - 3) Further progression: alveolar edema
 - → Respiratory acidemia at this point pt is no longer able to blow off CO2
 - Pulmonary Edema S/s
 - Anxiety
 - Pale, cyanotic
 - \circ $\,$ Cool and clammy skin $\,$
 - Dyspnea, orthopnea, tachypnea
 - \circ Use of accessory muscles
 - Coughing with frothy, blood-tinged sputum – remember that this is different from dry cough from chronic HF; indication that HF is progressing
 - \circ $\,$ Crackles and wheezes
 - Tachycardia (SNS s/s)
 - Hypotension or hypertension
 - \circ $\,$ Abnormal S3 and S4 $\,$
 - ADHF syndromes
 - We don't want cold or wet
 - Warm= good perfusion
 - Dry = no congestion

Pretty rare but means that lungs are congested AND low perfusion (severe)

DIAGNOSING HEART FAILURE

Because s/s are not specific for different valves, may need different screening

• **BNP** –most important biomarker that helps distinguish between resp. vs cardiac issue

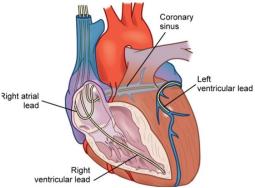
- Mechanism: pressure of the heart → stretching of the heart wall → release of BNP → body try to get rid of fluid
- CBC, BMP, cardiac markers, liver function test (LFT), RFP, thyroid, lipid check
 - Cardiac markers can detect signs of myocardial ischemia; troponin can usually increase a little due to stressors
 - LFT can check for **hepatomegaly**
- Exercise stress test
- Echocardiogram
- Cardiac catherization
- CXR -can visualize hypertrophy/cardiomegaly
- 12 lead ECG –can detect ventricular hypertrophy and dysrhythmia since HF are higher risks
 - Atrial fib: atrium is not contracting → can't squeeze the remaining blood into ventricles → decrease of EF; usually asymptomatic for normal ppl, but ppt with HF can worsen condition due to more EF decrease
- Electrolyte monitoring (esp. K+)
 - Esp. if pt takes other meds like ACE-I
 - Digoxin can exacerbate hypokalemia

COLLABORATIVE CARE FOR CHRONIC HF

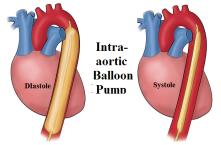
- Treat underlying cause
- Education
 - Fluid restriction teaching can be hard since **RAAS will trigger thirst**
- Nutrition: Na+<2g/day
- Weight daily and record important
 - Make sure pt has same cloth, measure at same time (morning is best)
- 02 supplementation (some pts may need home 02; make sure to educate fire safety)
- Rest to decrease 02 need by heart
- ICD or pacemaker
- Ultrafiltration to remove fluid
- Transplant

DRUGS FOR HEART FAILURE: "ABCDs"

- Ace-inhibitors/ARBs
 - o Blocks RAAS → decrease ventricular remodeling
 - Watch out for **angioedema** and **hypotension**
 - Beta-blockers
 - Stops SNS effects on heart –slows heart
 - **Contraindicated for acute HF** since it can actually worsen it
 - Monitor for bradycardia
- Cholesterol related to CAD
 - Statins are most commonly used
- Diuretics
 - Monitor for K+ levels
- Digitalis (digoxin -very high risk)
 - **Positive inotropic effect** increase contraction
 - Negative chronotropic effects -slows down heart
- Vasodilators
 - Hydralazine and Isosorbide Dinitrate
 - o Used when pts cannot have ACE-I


Newer Drugs

- Angiotensin receptor /Neprilisin inhibitors (an enzyme that breaks down **ANP** and **BNP**)
 - Sacubitril (ARB)/Valsartan
 - Trials demonstrated that it's better than ACE-I
- Ivabradine
 - Slows down **SA nodes** to slow down heart rate
 - Used for pts with **resting HF>70bpm** and are on **max amount of BB**


INTERPROFESSIONAL CARE: CARDIOSUPPORTIVE SYSTEMS/DEVICES

- **CardioMems system** continuously monitor pulmonary artery pressure and the HR to catch increase of **pressure so that we can prevent PE**
- Implantable cardioverter defibrillator (ICD)
- Biventricular pacing/cardiac resynchronization therapy (CRT)

 Regulate irregulate bad synchronization between left and right ventricles to maximize CO

- Ventricular assist device (VAD): device that helps the heart to pump blood throughout body
 - Used as a bridge to transplant or as destination therapy
- Impella pump: like a mini version of VAD; inserted into femoral artery into the LV; from there it pulls fluid and puts it to aorta
- Balloon pump
 - During diastole, balloon inflates to push back blood to coronary arteries and body
 - During systole, balloon deflates to allow blood to go from ventricle to aorta

TREATMENT OF ACUTE DECOMPENSATED HF

- Increase oxygenation
 - Give 02, raise HOB, manage anxiety
- Reduce volume overload
 - Diuretics (furosemide) main goal is to pull fluid out of lungs
 - → You may have to give nitroglycerin (vasodilator) in order for Lasix to work since the pt's SNS system will prevent urination

- Improve ventricular function
 - Vasodilators (IV nitroprusside, NTG)
 - → High BP contribute to increased **afterload**
 - Monitor continuously due risk of dysrhythmia with meds
- Increase force of contraction
 - IV inotropes (Milrinone and Dobutamine)
 - → Not first line of therapy due to risk of tachycardia

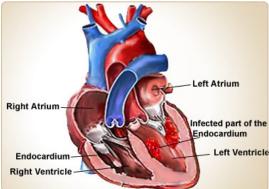
MANAGEMENT FOR ACUTE HF PTS

- Watch hemodynamic parameters
 - $\circ \quad \text{Heart rate} \quad$
 - Arterial BP
 - Pulmonary pressures
 - Central venous or right arterial pressure
 - **CO**
- Invasive hemodynamic monitoring system is implemented in critical care settings

Collaborative Care for Valvular Heart Disease

- Conservative therapy
 - Preventing recurrent **rheumatic fever** and **infective endocarditis**
 - Care depends on severity and the valve damaged
 - Goal is to prevent:
 - \rightarrow HF exacerbation
 - \rightarrow Pulmonary edema
 - \rightarrow Thromboembolism
- Medical/surgical interventions (done for severe situations)
 - Percutaneous transluminal valvuloplasty
 - \circ Valve repair or replacement

Valve Replacement

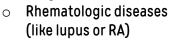

- Def: replacing damaged valve with prosthetic
- Classified as mechanic or biologic

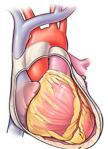
 Last longer Higher risk for thromboembolism, thus Shorter life needs long-term anticoagulation therapy (INR values
thromboembolism, thus - Shorter life needs long-term - Pts with atrial anticoagulation fibrillation needs
needs long-term - Pts with atrial anticoagulation fibrillation needs
anticoagulation fibrillation needs
therapy (INR values long-term
should be between 2.5- anticoagulation
3.5) therapy

- Nursing interventions for post-op
 - o Infection check
 - Monitor heart and put pt on telemetry due to high risk of **dysrhythmia**
 - Check for **kidney perfusion (UOP)** just to make sure that CO is now adequate

INFLAMMATORY CARDIAC DISORDERS

Infective Endocarditis




- Def: infection of endocardial layer of heart; since endocardial layer is continuous with heart valves → valves are infected as well (tricuspid is the most common one)
 - Vegetations form on valves or endocardial surface which may lead to emboli (if it dislodges)
 - Can either cause stenosis or regurgitation
- Classified as **acute** or **subacute** (may be asymptomatic)
- Can be bacterial, fungal, or viral
 - Most commonly caused by Streptococcus viridians and Staph. Aureus
- S/s:
 - Fever, chills, malaise, etc.
 - **New murmurs** since valves are not incompetent
- Risk factors
 - o Age
 - $\circ \quad \text{IV drug use} \quad$
 - Prosthetic heart valves
 - Prior endocarditis
 - Certain heart diseases
 - \rightarrow Cardiomyopathies
 - \rightarrow Congenital heart disease
 - → Acquired valve disease
 - → Existing cardiac lesions

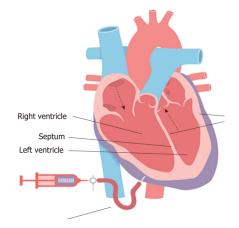
- Certain invasive procedures
 - $\rightarrow ~~ \textbf{PA catheters or central lines}$
 - \rightarrow Dialysis
- Clinical presentation
 - o Often **non-specific**
 - → Fever, malaise, weakness, anorexia, etc. (s/s of infection)
 - Abdominal discomfort
 - Arthralgia, myalgia
 - Cutaneous signs
 - → Splinter bleeding
 - \rightarrow Osler's nodes
 - → Roth's spots (in eye)
 - → Janeway lesions
 - Onset or changing heart murmur marker!
 - Signs of **embolization** depends on the affected organ
 - \rightarrow Spleen = ULQ pain
 - \rightarrow Brain = s/s of stroke
 - → Limbs=pain, pallor, pulselessness
 - → Lungs=SOB
 - → Kidneys=flank pain and blood in urine
- Treatment
 - Antibiotics (make sure pt is adherent for full course)
 - Prophylactic measures for high risk pts: pts with prosthetic HV, uncorrected congenital heart defects, and PA catheters
 - Antipyretics
 - Pain relivers for arthralgia and myalgia
 - \circ $\,$ Bed rest is usually not needed
 - Pt education for high risk pts (infection prevention, avoiding fatigue, oral hygiene, IVDA treatment)

Pericarditis

- **Def:** inflammation of pericardial sac
- Often idiopathic
- Can be infectious or not
 - Non-infection: uremia, AMI, trauma, radiation
- Can be caused by hypersensitivity
 - Drug reactions

Thickened pericardium ricardium cut-away)

- Clinical manifestations
 - Chest pain worse with **inspiration -hall mark** and when swallowing
 - → Usually relieved by sitting forward (unlike MI) and worse when pt
 - \rightarrow Pain can radiate to trapezius
 - Pericardial friction rub
 - ST segment elevation on EVERY lead (unlike MI)
- Warning s/s that may indicate progression to cardiac tamponade/pericardial effusion (remember that inflamed tissue is very easy to rupture and leak)
 - **Muffled heart sounds** (due to fluid between stethoscope and heart)
 - $\circ ~~ \text{JVD}$
 - **Pulsus paradoxus** –when systolic BP drops more than 10mmHg when pt inhale
 - Tachycardia, tachypnea, confusion, agitation



- Treatment
 - \circ Antibiotics
 - NSAIDs -classic for inflammation
 - **Colchicine** (anti-inflammatory med)
 - Corticosteroids (high risk; do not use unless really needed)
 - Pericardiocentesis
 - \rightarrow ECG lead is attached to needle

Post Procedure Care for Pericardiocentesis

- Obtain **12-lead ECG via PCXR** to get **baseline** and see if treatment was effective
- Continuous cardiac monitoring since heart is more **irritable**
- Check for resolution or recurrence of **effusion** or tamponade
 - Check v/s every 15 mins for the first hour and then every 30 mins until pt is stable
- Make sure that **pericardial fluid was sent to lab** for tests

- Proper pericardial catheter care
- Monitor drainage from catheter

