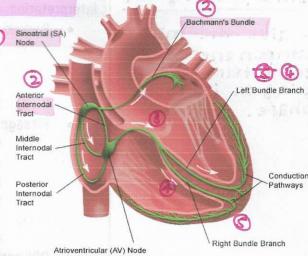
CARDIAC CONDUCTION

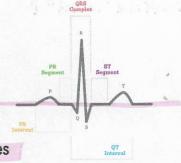

- Describe the pathway

- what is the normal sa node rhythm? what about av node?
- 26 kpm, what does that mean?
- percribe the importance of AV node

ECG Reading

CARDIAC CONDUCTION SYSTEM

- Electrical pathway:
 - 1) SA node
 - AV node and Backman's bundle
 - 3) Septum and bundles
 - 4) Right and left bundle branch
 - 5) Purkinje fibers –
 generate the QRS
 complex (ventricle
 depolarization)



- The heart is capable of
 automaticity = do not need electrical input from the brain to generate electrical potential
- SA node and AV node
 - SA node is the fastest rate of all the cardiac cells → they are the "pacemaker"
 - → The fastest signal will take control of the heart, thus if a group of cells outside the SA node is faster → those cells will become the pacemaker
 - → Normal SA node rhythm = between 60-100bpm
 - ✓ A health person may not need treatment
 - → IF SA node doesn't work (known as 6 sinuses syndrome) = AV node will become the pacemaker → then the intrinsic heart rate will be between 40-60bpm
 - ✓ If both nodes are compromised → complete or 3rd degree heart block → now the ventricles will have to pace themselves (rate will be between 20-30bpm) → rate is too slow to be compatible with life
 - AV node is the only way to send electrical impulses to the ventricles
 - → Under normal circumstances, the cartilages of the heart valves will not allow electrical impulses to flow through the ventricles unless AV node is present
- Dysrhythmia: electrical impulse does not follow the normal conduction pathway → CO is compromised

ELECTROCARDIOGRAM

Components:

- Line/segment = iso-electrical line
- Positive wave = moving upward from baseline
- Negative wave = moving downward from baseline
- Interval = combination of segment and wave; measures how long certain parts are taking
 - Ex: PR interval tells us how long it takes electrical signals to move from SA node to the ventricles

- Give the main components of each what is phase.

- a pt's ECG shows

 what does it mean?

 what if it was a sr

 depression?
- at bloid ageiou

- Define "lead" 5

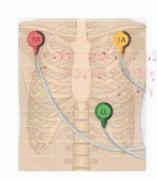
Interpretation

- P wave: atrial depolarization
 - Smaller than QRS since atria is very small compared to ventricles
 - → If P waves become larger = more electrical impulses generated in atria (can indicate enlargement of atria

Atrial

depolarization

WAVE


PR: AV node

conduction

- Presence of P wave does not necessarily mean atrial contraction
- PR segment: AV node conduction
 - Can be longer if the heart is slower (esp. in athletes); can be narrower/short if the heart is faster
 - The interventricular septum is depolarizing
- QRS complex: ventricular depolarization
 - As the ventricles are depolarizing, the atria is also repolarizing, but we can't see it b/c the atria's electrical activity is smaller than that of ventricles
- ST segment
 - o ST elevation = MI
 - ST depression = ischemia
- QT interval
 - Prolongation = increased relative refractory period (the state in which the heart is vulnerable)
- T wave: ventricular repolarization
 - Heart "re-sets"
 - Repolarizes from apex to base

Electrodes

- Connected to wires
 - Wires are connected to monitoring devices that translates electrical signals into visual fields
- Allow detection of electrical activity in heart

I DESCRIPTION OF THE

MITTORGER TO CATARA

Ventricular

WAVE

repolarization

Ventricular depolarization

LEADS

- Def: imaginary lines formed between 2 electrodes
 - Sort of like a camera angle = looking at the heart towards a reference point; each lead gives a different view
 - → We will focus on lead 2 (most typical one)
- They provide a "snapshot" of electrical activity in the heart
 - Appearance of lead differs depending on the placement of lead
 - → Ex: some leads will have QRS complex inverted while others will have it everted
- We need to know where to place the lead to get a proper reading

ning an ecq

- Which type is

the electrodes - Hom go dor bigce

Lead 2

- Placement: positive electrode is placed at the apex of heart and is looking at the base on the heart
- Upright wave = positive wave
 - When positive wave of energy (generation of electrical current) moves towards positive lead → upward reflection
 - When negative wave of energy moves towards negative lead → upward reflection

Methods of Obtaining an ECG

- 12 lead ECG
 - Used to diagnose dysrhythmias
 - Focused on the left ventricles since that's where most problems occur

RA(-)

(F)

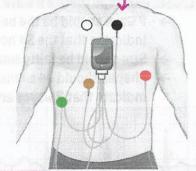
Positive

wave is moving

towards the

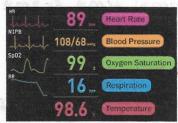
positive sign

Negative wave is moving

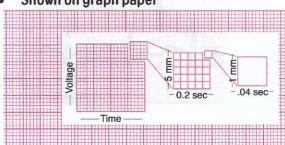

towards a negative wave =

upright reflection

Right atrium


Right

- Cardiac telemetry
 - Most common at the bedside
 - o 5 lead ECG
 - Placement


White Black Brown Green Red

- Holter monitor
 - Portable monitor that is used for pts who have palpitations at home, but they are gone when pt comes to ER
 - o Records 24/7
- Bedside cardiac monitor
 - Usually seen in ICU, ER, post-op, and pre-op
 - Gives at least 2 lead along with other v/s

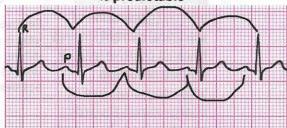
12 LEAD ECG INTERPRETATION

Shown on graph paper

Time tells you how long electrical signals take to travel

Voltage tells you how much electrical potential there is

12-Lead ECG Interpretation

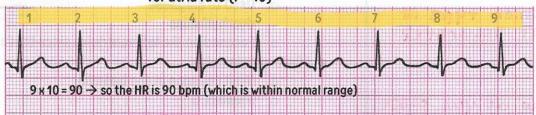

- interpret the 12 lead eces;
- How do you check rhythm?
- -How do you check

wegur ______

- what is the normal time frame for printerval?

- A pt's ecg has
a pr-interval is
o.4 secs, what does
that mean?

- Steps for interpretation
 - 1) Rhythm: is it regular or irregular?
 - a. Check R-R intervals
 - b. Check P-P intervals
 - → If irregularity is found, determine if the irregular heart rhythm is predictable



R-R intervals are spread out **evenly** = reg heart rhythm


P-P intervals are spread out evenly = reg atrial rhythm

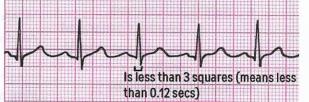
This lead has reg atria and vent. Rhythms

- 2) Heart rate: fast or slow?
 - a. Count the number of R waves in a 6 sec strip and multiply by 10; you do (R*10)
 - b. Count the number of P waves in a 6 sec strip and multiply by 10 for atria rate (P*10)

- 3) Locate Pwave; is there a Pwave for every QRS complex? (normally yes)
 - → P wave should be the beginning of every cardiac cycle → indicates that the SA node is acting as pacemaker
 - → Size should be fairly small
 - → Shapes should be similar for all P waves; different shapes may indicate that P waves are not generated for SA node

All the P waves look fairly

- 4) Determine the PR interval; normal time is 0.12-0.2 secs
 - Interval should not be above 1 big square (since 1 big square = 0.2secs)
 - ✓ If longer = first degree AV block
 - → Make sure every QRS complex has a P wave before
 - If no QRS is seen = electrical impulses were not sent to the ventricles
 - If no P wave before = SA node is not pacing the heart and something else is

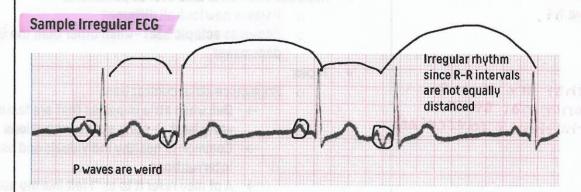

Each QRS is preceded by a P wave

Interval is within 0.12-0.2 secs (less than 1 big square)

- tor Bex complexs
- Myat apont phoet ecd look likes phookalamic ben - Myat monig a
- A pot's ecg shows high Twave, what does that mean?


- what are some sis of dysrhythmias?

- 5) Identify QRS complex; (normal time should be less than 0.12 secs)
 - → You want nice, skinny QRS complex (for maximum CO)
 - → No longer than 3 small squares
 - → Hyperkalemia causes wide and prolonged QRS while hypokalemia causes QT interval prolongation, U wave, and ST depression



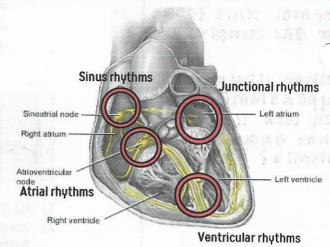
QRS are all tall, skinny, and similar

- 6) Identify ST segment; should be at baseline
- 7) Identify **Twave** and check if there's **Uwave**; should be upright and flattened for **Twave**
 - → Peaked **T wave** may mean **hypokalemia**
 - → U waves should be absent; if present = hypokalemia

- 8) Interpret the rhythm
 - → Anytime you see an abnormal strip, do a physical assessment and ask the pt how he/she is feeling
 - ✓ Check for SOB, capillary refill, dyspnea, etc.
 - → Look for classic s/s:
 - Cool, clammy, sweaty
 - V Dizzv
 - ✓ Decreased LOC
 - Decreased BP
 - > You want to treat the pt and not the monitor!
 - → All dysrhythmias can lead to decreased CO –what we want to prevent

Cardiac Rhythms

- What is a "junctional rhytham?"


- sinus rhythms
are shown by
- What are the
2 abnormal sinus
rhythms? (describe)

- Define nectopic"

-what are the 3 abnormal attial chescribe)

CARDIAC RHYTHMS CLASSIFICATIONS

- Sinus rhythms
 - Rhythms generated
 by the SA node
- Atrial rhythms
- Junctional rhythms
 - Rhythms generated by cells near the SA node
- Ventricular rhythms

Rate: 60 bpm

secs

normal rate)

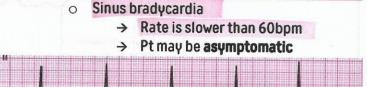
Rhythm: regular

Rate: 50 bpm (lower than

Everything else is the same

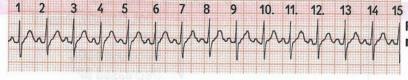
P waves: uniform and upright P to QRS ratio = one to one

PR interval: between 0.12-0.2


QRS complex: less than 0.12

Sinus Rhythms

- Shown via P wave
- Vary according to rate
- Types:
- Normal


 1 2 3 4 5 6

 1 1 2 3 4 5 6

2 3 4 5 5 Sinus tachycardia

→ Rate is faster than 100bpm; between 100-200bpm

Rate: 150bpm (faster than normal rate)

Atrial Rhythms

- Happens when atria take over as pacemaker
 - o P waves now look all different
 - Known as ectopic beat –when other than the SA node is acting as pacemaker
- Types:
 - Premature atrial contraction
 - → Def: when atria impulses that are faster than SA node's cause early beat → early atria contractions
 - → Common in healthy individuals and usually don't need interventions
 - → A pt may refer it to as "I felt like my heart skipped a beat"

- How can you ture ventricular

- How can you check a. file?

- How can you check a. flutter?

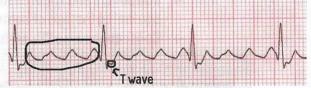
- Ventricular rhythms are shown by ——

- What are the 3 abnormal ventricular

rhythms?

- Differentiate
"unifocal" VS "multi
focal" OVC.

→ Frequent or symptomatic PAC need treatment and can lead to serious dysrhythmias


- Atrial fib.
 - → Def: disorganized and random cells in atria are firing → atria cannot contract in synchrony and are rather squirming
 - → Atrial rate is between 350-600bpm (very fast)
 - ✓ AV nodes can block the abnormally fast electrical impulses from atria → allows ventricles to keep their rhythms for a while, but the AV node cannot block all impulses → can lead to vent. dysrhythmias as well
 - → Most common sustained cardiac arrythmia
 - Usually associated with aging (15% of ppl above 85 γrs) and often happens in heart that is chronically ill (like hypoxia, COPD, sleep apnea, etc.)
 - → Can be asymptomatic
 - → Causes loss of atrial "kick" → decreased CO by 20-30%
 - May not impact healthy ppl but for ppl who already have cardiac compromise, it can cause serious issues

Unable to see P waves; we only see squirmy lines instead of a proper wave

T waves are also pretty invisible

- Atrial flutter
 - → Has a fairly regular ventricular rate
 - → Similar to A. fib but the P waves are countable
 - → Atrial rhythms is between 250-350 bpm
 - → "Sawtooth pattern" on P waves
 - → Greater number of P waves than QRS complex (usually 3-4 P waves for 1 QRS)

You can count the P waves

Ventricular Rhythms

- Ventricles become the pacemaker
- Types:
 - Premature ventricular complexes
 - → Can't see P wave or PR interval
 - → QRS is longer than 0.12 secs and look bizarre
 - → Twaves are opposite QRS direction
 - → More than 2 PVCs in a row = vent. Tachycardia
 - → Unifocal vs multifocal
 - Unifocal = premature beats look alike, means that one part of the ventricle has an issue

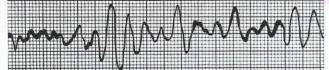
- HOW can you eneck for pvc?

- How can you check for v. tach?

- a puise or no
- Hom do you treat
- How can you check for v.tach?
- HOW do you

- ✓ Multifocal = premature beats look different, means
 that different parts of the ventricles are irritated
- → Ventricular bigemity vs ventricular trigemity
 - ✓ Bigemity = every other QRS complex is a PVC
 - Trigemity = every 3rd QRS complex is a PVC

o Ventricular tachycardia


- > Def: tachycardia coming in ventricles
- → Looks like a bunch of PVCs lined up; "shark tooth" appearance
- → No P waves
- → Almost invisible T wayes
- → You can count the P waves
- → Very serious; cannot live for long
 - ✓ Some pts may have "bursts" of v-tach and that may not be as deadly

Looks weird bur organized (has a pattern)

This is a **multifocal** since the 2 QRS look different

- > Treatment:
 - ✓ If it has a pulse → sedate pt (if possible) and do synchronized cardioversion (shocking in coordination to "R wave" to prevent delivering is at QT interval which can cause v. fib)
 - ✓ If no pulse → defibrillation and ACLS protocol; treat it like a v. fib
- Ventricular fibrillation
 - → Def: severe electrical chaos in the ventricles → ventricles are squirming instead of contracting
 - > Consequence: no CO, perfusion, or pulse

Looks very weird and disorganized unlike v. tach

- → Treatment:
 - 1) Defibrillate
 - 2) CPR (only buys time)

DEFIBRILLATION

- 2 types:
 - Monophasic: sends energy in one direction (need higher level of joules)

Defibrillation

- What is the main goal of fibriliation?

- which dys can we try defibrillation

Asystole

- 4 79+ 9-24 2+016 5

Artifact

- Define "artifact"
- Hom do you

Electrical Interference

- Define electrical interference.

- Biphasic (more common): 2 passes of energy in heart → allows to reduce the number of joules needed for each pass → less pain and complications like burns
- Goal: allow SA node to resume control
- MOA: electrical current is delivered through the chest wall and heart to depolarize myocardial cells so that the SA node can pick back up rhythm
- Used for:
 - Ventricular fibrillation
 - Pulseless ventricular tachycardia

Defibrillating Steps

- 1) Self-adhesive pads are applied to pt's chest (remove hair as needed)
- Protect the pt from burns by making sure that environment is fire safe (like not near 02)
- 3) Charge defibrillator and make sure all team members are "all clear"
- 4) Deliver shock
- 5) Begin CPR
- 6) Check for normal rhythm by checking pulse; is yes -> yay
- 7) If no pulse → resume CPR

ASYSTOLE

- Def: no electrical activity; ventricular standstill
- "flat line"
- May see tiny P wave
- Cannot be treated with shock; the best you can do is CPR and call code

ARTIFACT

- "Garbage"
- Mechanical issue like pt's electrodes are misplaced or pt is moving, malfunctioning electrodes, etc.

ELECTRICAL INTERFERENCE

- Not pathological but a disturbance of electrical impulse
- Can be due to pt shivering and his/her muscle generating impulses

